Strategies to Reduce NO\textsubscript{X} Emissions

In the boiler-burner industry, most experts agreed that NO comprises about 95% of total NO\textsubscript{X}, with NO\textsubscript{2} making up the remaining 5%. But, more recent studies have shown that NO\textsubscript{2} can make up an appreciable amount of the total NO\textsubscript{X} formed, particularly at very low NO\textsubscript{X} levels. Many areas of California, for example, require sub-9 ppm NO\textsubscript{X} operation. Therefore, accurate NO\textsubscript{X} measurements require both NO and NO\textsubscript{2} cells. Before investing a combustion analyzer that measures NO\textsubscript{X}, ensure that it includes both NO and NO\textsubscript{2} cells.

NO\textsubscript{X} control technologies vary widely across burner and boiler manufacturers, and can also depend greatly on the required emissions standards in different air quality management districts (AQMD). Permitted NO\textsubscript{X} levels can and do dictate the most cost-effective strategy available for NO\textsubscript{X} reduction. Here are a few:

- Reducing the amount of O\textsubscript{2} available to bind with nitrogen during the combustion process is probably the least expensive strategy to implement. This entails the use of a combustion analyzer to adjust the fuel/air mixture such that the amount of O\textsubscript{2} as measured in the flue gas sample is minimized (and still within the manufacturer’s specifications). Tuning up the boiler in this manner can potentially reduce the NO\textsubscript{X} production by as much as 10%. Generally, this method is insufficient to achieve NO\textsubscript{X} levels that are required today.

- Burning low nitrogen fuel oils that contain significantly less fuel-bound nitrogen (FBN) can reduce NO\textsubscript{X} emissions by more than 80%. However, this low FBN fuel oil can be very expensive.

- Injecting water or steam into the flame reduces flame temperature and thus lowers overall NO\textsubscript{X} production by as much as 80% for gas. However, this technique can result in lowering boiler efficiency by 5% or more, depending on the amount of steam or water injected. Increasing the amount of moisture in the flue gases may also lead to condensation and consequently cause damage to boiler and flue passageways.

- Induced Flue Gas Recirculation (FGR) is one of the more commonly used methods to reduce NO\textsubscript{X} emissions and involves pulling relatively cool combustion gases from the vent system and mixing with combustion air. Flue gases are composed of inert gases such as water vapor, carbon dioxide and nitrogen, which take heat away from the combustion process and lower flame temperatures. Flue gas recirculation is capable of reducing NO\textsubscript{X} emissions by as much as 80%.

- Stage combustion entails running either a fuel-rich or fuel-lean primary zone followed by a fuel-rich or -lean secondary combustion zone, and can be very effective for modest NO\textsubscript{X} levels reduction. However, incorporating FGR with staged combustion can reduce NO\textsubscript{X} levels by more than 90%.

- Premixed combustion involves premixing the air and fuel prior to introduction into the combustion zone. This method can also yield modest- to high-level NO\textsubscript{X} reductions (single-digit NO\textsubscript{X}), but carries the inherent potential for flashback and the need for elevated excess air levels leading to lower combustion efficiencies.
Selective catalytic reduction is a post-combustion NO\textsubscript{X} cleanup technology involving injecting the flue gas with ammonia or urea and passing the gases over a catalyst. This technology is very effective in reducing NO\textsubscript{X} levels to 3 ppm or lower. However, the initial system capital costs, the annual operating costs and potential environmental issues surrounding issues such as ammonia “slip” can be substantial.

There are other technologies and technology combinations used to reduce NO\textsubscript{X} emissions; however, the aforementioned strategies are most prevalent today.

To find out which NO\textsubscript{X}-reducing strategy is best for your boiler system, visit us @ bjmuirhead.com